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Nonlinear and chaotic oscillations of an india-rubber band
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The restoring force of a length of stretched elastic band is studied experimentally and the comparison with
that of a spring is discussed. It is demonstrated that the simplest model of elastic band oscillations is capable
of showing nonlinear phenomena including crisis, periodic, and chaotic motions, as well as spatial symmetry
breaking.[S1063-651%97)09211-§

PACS numbdis): 05.45+b, 05.40:+]j

[. INTRODUCTION to 100 N. The experiments were carried out in two wags:
controlling the displacement of the movable part with a con-
A great deal of attention has been paid in the past fewstant stretching rat¢50 mm/min and (b) controlling the
decades to the study of nonlinear oscillations of elastimdded load rat€0.1 N/min or 0.5 N/m. In both cases the
springs[1-9], although the earliest studies go back to thecomputer records the load and longitudinal stretch every 0.05
past century[10]. In addition to their scientific interest, s. We found very similar results for the two types of experi-
springs appear in almost all physics textbooks, at secondaryents: A typical example is plotted in Fig. (thick line).
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and university level$11,12, as the simplest model for both Observe the initial smooth hump, forming a first nonlinear
linear and nonlinear oscillations. However, a length of ordi-region of elasticity, which is the characteristic feature of the
nary (cuf) elastic india-rubber bandhenceforth termed elastic band distinguishing it from, for example, an elastic
“elastic band”) is another of the simplest spatially distrib- spring[13]. A second broader region of nonlinearitgfter
uted nonlinear systems imaginable: In addition to its intrinsicthe inflection pointis common to elastic sprind43].
theoretical interest, the nonlinear dynamics of an elastic band To take these characteristics into account we propose the
could also shed light on the dynamics of more complicatedollowing analytical expression for the restoring force:
systems with spatial distributiofe.g., hydrodynamic sys-
tems. The main purpose of this work is to reveal the char- F(x)=—k x( 2—tan}‘H
acteristics of the restoring force of a common elastic band. a

The paper is organized as follows. In Sec. Il we propose ) . o
an analytical expression for the restoring force of a stretcheherex is the displacement from the relaxed positikris a
elastic band that is in excellent agreement with our experistrength parametes is an elastic-band characteristic pa-
mental results. A comparison is also made with the restoring
force corresponding to a stretched nonlinear elastic spring. In 8 ' ' '
Sec. lll we study a very simple single-mode model of elastic-
band oscillations deduced from the phenomenological restor-
ing force postulated in Sec. Il and demonstrate that the vi- 6L i
brating elastic band can undergo spatial symmetry breaking
and crisis as well as periodic and chaotic motions. We con-
centrate on the structural stability of the model system under
changes in an elastic-band characteristic parameter. Finally,
Sec. IV gives a summary of the results.

Force (N)
~
T
!

Il. EXPERIMENTAL ELASTIC-BAND P 4
RESTORING FORCE

We studied experimentally the elastic response of lengths
of (common stationer’s elastic bands subjected to stretching. o , , |
The samples were in the form of ribbons with different di- ) 200 400 600
mensions. The experiments were carried out in a mechanical
testing machine controlled by computer, in all cases at the
same temperature~25 °C). The specimens were gripped  FIG. 1. Experimental restoring fordghick line) of a stretched
between a stationary lower and a movable top clamp. Thelastic band and theoretical fitthin line) [Eq. (1)] for k
movable part contained a force controller that measured ug0.0068 N/mm,a=236 mm, ando=1.23<10"% mm.

Displacement (mm)
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FIG. 2. Single-mode model for nonlinear oscillations of an elas- ¥
tic band. The oscillations are assumed to be in the fundamental F|G. 3. Global bifurcation diagram for the variabté, with A
mode and are measured in the transvergeplane in terms of polar =285, §=0.2, w=0.86, andy in the range 0.& y<1.
coordinates 1(, ).

2kr
rameter that controls the shape of the aforementioned F=—|—[(|—|o)

smooth humgF(x)~kx for the second linearity regiorx

~3a], andb is the (main nonlinearity parameter that is where the position of the particle is given in terms of polar

responsible for the wider and stronger nonlinearity region . fthex-v pl E ina the riaht-h
The best nonlinear least-squares Levenberg-Marquardt fit tt:oordlnates (,0) of thex-y plane. Expanding the right-hand

1 H H . i i < ) < ] i
the experimental example plotted in Fig. 1 was wkh Slde of Eq.(4) in a seriesir <lo, d=<lo), we obtain

| —1
2—tan>+TO +b(l —Io)3], 4

=0.0068 N/mm, a=236 mm, andb=1.23x10"° mm2 2 .3

o - A kd 2k d d de r
(thin line). Similarly good fits were found to the other ex- F=—4| —|r——|1-=——3—|r®+0| =, =/, (5)
perimental results by suitably choosing the parametgash lo 15 a o 15" 1o

for each case. _ _ _ _
It is illuminating to consider the limiting cases—0  I-€., We can approximate the equation of motion by
for the restoring forcél). Indeed, we obtain

F+ wr (1+ aeyr?) =0, (6)
lim F(x)=—k(2x+bx®), 2) .
s e
lim F(x)=—k(x+bx3), 3

a—0 6 -

i.e., the two limits correspond to nonlinear springs with

Hooke’s elastic constantskZandk, respectively. 2|
)(v 0 :
lll. DYNAMICS OF AN ELASTIC-BAND | . e s 25 '"‘:l!!é;
MECHANICAL MODEL 2r

The simplest model of an elastic band oscillating in its -4

fundamental mode is illustrated in Fig. 2. The ends of a
massless elastic band are fixed a distandg2¢) apart,
where the relaxed length of the elastic band Ig and its
parameters ark,a,b [cf. Eqg. (1)]. Note that at the equilib-

rium position the elastic band is stretched a length(&e -10 ' ! ! |
assume that the ends of the elastic band are fixed symmetri- 02 04 06 08 10
cally). To the center of the elastic band is attached a particle Y

of massm that is free to oscillate in the-y plane around the
origin. According to Eq/(1), the restoring force on the par- FIG. 4. Global bifurcation diagram for the variabté, with A
ticle is =27,6=0.2, v=1.34, andy in the range 0.2 y<1.
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FIG. 5. Phase-space portraits for the paraméte.2, A=28.5, and() =0.86.(a) Symmetric orbit (/=0.2), (b) followed by symmetry
breaking (y=0.6), (c) by period doubling =0.8), and ther{d) by chaos {=0.91).

where the same intrinsically nonlinear cubic oscillator. The respec-
tive equation of motion for Eq8) is given by
wi=4kd/mly,
F+ war(1+ agsr?)=0, (9)
aep=[a(lo—3d)—dly]/2dal3, )
. . . . .where
which corresponds to a two-dimensional conservative cubic
oscillator with a single potential wella>1,d/(I,—3d)]. asE(|0—3d)/2d|S. (10)

Observe that the nonlinearity parametey, increases with
increasing elastic-band characteristic parametdrhis is the
main difference with respect to the corresponding sprin
problem at the same perturbative ordef. Refs.[9, 13)).
Indeed, for the spring counterpart, under a similar approxi-
mation, one find$13]

dA comparison between,, [cf. Eq. (7)] and «, gives
as— aep=1/2aly, (11

with a.,— ag asa—oo, in agreement with the discussion in
2k'd k' d Sec. Il
~N——T— rs,

P iz | 173 8 In general, we will want to consider forcing and damping,
0

I
0 so Eq.(6) is rewritten

with k' being the spring parameték’=2k; cf. Sec. ). ., 5 .
However, in the limitd—0, both systems are described by F+ wgr (1+ aepr®) + Br=P(t), (12)
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FIG. 6. Power spectra corresponding to the respective cases in Fig. 5 showing the following set(mesgeimetric orbit(odd
subharmonics (b) symmetry breakingodd plus even subharmonj¢$c) period doubling, andd) chaos.

whereP(t) is aT-periodic forcing term ang is the damping for an elastic band vibrating primarily in its fundamental
coefficient (which is a scalar due to the symmetry of the mode is a forced Duffing equatidid4] of the form

system. In order to facilitate the comparison between theo-
retical and(future) experimental results, Eq12) can be re-
written in dimensionless form. To this end, consider the

X"+ x(14 yx?)=— 6x"+ G( 7l wg), (16)

transformation where Eq.(16) is obtained from Eq(14) by assuming that
the dynamics is confined to thez plane(see Fig. 2 In this
T=wot, q=r/ly, (13)  paper we will take the forcing term to have the form of a
harmonic modulation
giving
G(7lwy)=A cogQ 1), a7
q"+d(1+y9%) + 89" =G(r/ wg), (14)

with Q=27/Twy.

The simplest way to visualize the differences between
spring and elastic-band vibrations is to study the evolution of
the attracting orbits as only the elastic-band characteristic
parameten [and hencey; cf. Egs.(7) and(15)] is varied. To

For the sake of simplicity, suppose that the ends of thehis end we will construct global bifurcation diagraxs vs
elastic band are fixed in such a way that the oscillation isy) and phase-space diagrarmis vs x) for planar motion
confined to a single plane. The nonlinear equation of motionmodeled by the Duffing oscillator forced only in thedirec-

where the prime denotes differentiation with respect &md

y=ags, 6=plwg, G=Pllyw}. (15)
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FIG. 8. Bidimensional Poincaection simultaneously showing
2 the period-3 attractofcircles for y=0.81 and the chaotic attractor
(b) . for y=0.82. The remaining parameters are the same as in Fig. 4.
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FIG. 7. Bidimensional Poincarsections illustrating the crisis
process for the same parameters as in FigaBy=0.91, chaotic X
attractor associated with the period-doubling cascade, (andy 15
=0.92, the jump in size of the chaotic attractor should be noted.
tion by a harmonic termiEgs. (16) and (17), respectively. 10 -
To integrate the differential equations we used a fourth-order
Runge-Kutta method with time steps in the range s|
=0.005-0.01. In most of the numerical simulatiods
=0.2, A={28.5,2%, (1={0.86,1.34, and the nonlinearity
parametery ranged from 0.2 to 1. Another way of character- x' of
izing the phenomenon is by looking at the spectral properties
of the solutions. The numerical integration yields pseudo-
orbits of the system in the form of time serie&),x’(t); a S
standard fast Fourier transform then yields the power spec-
trum S(w) =|a(w)|?. Usual averaging procedures were used 10 -
to improve its quality{ 15].
In order to appreciate to some extent the global dynamical
behavior of the model systef@6) and(17) as the parameter -15 ‘ ' : : ‘
. . . i ! . -6 -4 2 0 2 4 6
v is varied, we have determined global bifurcation diagrams X

corresponding to the variable’ for two different sets of
parametergFigs. 3 and 3 Figure 5 shows the evolution of FIG. 9. Phase-space steady-state trajectories corresponding to
the phase-space portraits for increasing nonlinearity paranhe attractors in Fig. 8a y=0.81 and(b) y=0.82.
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etery and the remaining parameters fixed at the same valuestate trajectories are plotted in FigdaPand 9b), respec-
as in Fig. 3. The associated power spectra, corresponding tively.
the x’(t) series, are plotted in Fig. 6. For small valuesyof
the orbit is symmetri¢see Figs. 3 and(8)] with peaks cor-
responding only to odd subharmonics in the associated We have studied experimentally the restoring force aris-
power spectrunjFig. 6(a)]. However, fory=0.3 the orbits ing from an elastic band, comparing it with that from an
become spatially asymmetriEigs. 3 and &)], which is  elastic spring. It was shown that the simplest model for
reflected in the visible presence of even subharmonics in théamped and forced oscillations of the band is capable of
corresponding power spectruffrig. 6(b)]. This symmetry exhibiting several nonlinear phenomena, including crisis as
breakingof the Duffing oscillator appears to be a precursorVe!l as spatial symmetry breaking as a precursor to the
of the period-doubling route for chad§igs. 3, §c), and per!od-doubllng route for chaos. We believe _that the com-
6(c)]. This type of phenomenon was found by D’Hurmieres P271SoN between 'gheory and experiment for t_hls model co.uld
_ ) o . : provide valuable information about the nonlinear dynamics
et al.[16] in a driven pendulum with increasing forcing am-

i of spatially extended systems. Of course, with the onset of
plitudes[17]. For larger values of the system undergoes an o atic motion it is reasonable to expect that this single
interior crisis in the sense of Grebogi, Ott, and Yof#&]. e will lose applicability since chaotic behavior implies
The period-doubling chaotic attractor resulting jat0.91

! _ the excitation of several modes, so that the formulation of a
[Fig. 7(@)] suddenly blows up to a large chaotic attracor multimode model would seem appropriate. In sum, the gen-

=0.92[Fig. 7(b)]. As a final example, Fig. 8 shows the Poin- eral problem of the “excitation of multiple modes” by cha-
caresections corresponding to period-3 and chaotic attractorstic oscillations might be fruitfully investigated by combin-
for y=0.81 and 0.82, respectively, the remaining parameterig experimental and theoretical studies of vibrating elastic
fixed at the same values as in Fig. 4. The associated steadyands.

IV. CONCLUSION
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