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Nonlinear and chaotic oscillations of an india-rubber band
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The restoring force of a length of stretched elastic band is studied experimentally and the comparison with
that of a spring is discussed. It is demonstrated that the simplest model of elastic band oscillations is capable
of showing nonlinear phenomena including crisis, periodic, and chaotic motions, as well as spatial symmetry
breaking.@S1063-651X~97!09211-8#

PACS number~s!: 05.45.1b, 05.40.1j
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I. INTRODUCTION

A great deal of attention has been paid in the past
decades to the study of nonlinear oscillations of ela
springs@1–9#, although the earliest studies go back to t
past century@10#. In addition to their scientific interest
springs appear in almost all physics textbooks, at secon
and university levels@11,12#, as the simplest model for bot
linear and nonlinear oscillations. However, a length of or
nary ~cut! elastic india-rubber band~henceforth termed
‘‘elastic band’’! is another of the simplest spatially distrib
uted nonlinear systems imaginable: In addition to its intrin
theoretical interest, the nonlinear dynamics of an elastic b
could also shed light on the dynamics of more complica
systems with spatial distribution~e.g., hydrodynamic sys
tems!. The main purpose of this work is to reveal the ch
acteristics of the restoring force of a common elastic ban

The paper is organized as follows. In Sec. II we propo
an analytical expression for the restoring force of a stretc
elastic band that is in excellent agreement with our exp
mental results. A comparison is also made with the resto
force corresponding to a stretched nonlinear elastic spring
Sec. III we study a very simple single-mode model of elas
band oscillations deduced from the phenomenological res
ing force postulated in Sec. II and demonstrate that the
brating elastic band can undergo spatial symmetry brea
and crisis as well as periodic and chaotic motions. We c
centrate on the structural stability of the model system un
changes in an elastic-band characteristic parameter. Fin
Sec. IV gives a summary of the results.

II. EXPERIMENTAL ELASTIC-BAND
RESTORING FORCE

We studied experimentally the elastic response of leng
of ~common! stationer’s elastic bands subjected to stretchi
The samples were in the form of ribbons with different d
mensions. The experiments were carried out in a mechan
testing machine controlled by computer, in all cases at
same temperature (;25 °C). The specimens were grippe
between a stationary lower and a movable top clamp.
movable part contained a force controller that measured
561063-651X/97/56~5!/5321~6!/$10.00
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to 100 N. The experiments were carried out in two ways:~a!
controlling the displacement of the movable part with a co
stant stretching rate~50 mm/min! and ~b! controlling the
added load rate~0.1 N/min or 0.5 N/m!. In both cases the
computer records the load and longitudinal stretch every 0
s. We found very similar results for the two types of expe
ments: A typical example is plotted in Fig. 1~thick line!.
Observe the initial smooth hump, forming a first nonline
region of elasticity, which is the characteristic feature of t
elastic band distinguishing it from, for example, an elas
spring @13#. A second broader region of nonlinearity~after
the inflection point! is common to elastic springs@13#.

To take these characteristics into account we propose
following analytical expression for the restoring force:

F~x!52kFxS 22tanhUxaU D1bx3G , ~1!

wherex is the displacement from the relaxed position,k is a
strength parameter,a is an elastic-band characteristic pa

FIG. 1. Experimental restoring force~thick line! of a stretched
elastic band and theoretical fit~thin line! @Eq. ~1!# for k
50.0068 N/mm,a5236 mm, andb51.2331026 mm.
5321 © 1997 The American Physical Society
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5322 56CHACÓN, SUÁREZ, SÁNCHEZ-BAJO, AND MUÑIZ
rameter that controls the shape of the aforemention
smooth hump@F(x)'kx for the second linearity region,x
'3a#, and b is the ~main! nonlinearity parameter that i
responsible for the wider and stronger nonlinearity regi
The best nonlinear least-squares Levenberg-Marquardt fi
the experimental example plotted in Fig. 1 was withk
50.0068 N/mm, a5236 mm, and b51.2331026 mm22

~thin line!. Similarly good fits were found to the other ex
perimental results by suitably choosing the parametersk,a,b
for each case.

It is illuminating to consider the limiting casesa→0,̀
for the restoring force~1!. Indeed, we obtain

lim
a→`

F~x!52k~2x1bx3!, ~2!

lim
a→0

F~x!52k~x1bx3!, ~3!

i.e., the two limits correspond to nonlinear springs w
Hooke’s elastic constants 2k andk, respectively.

III. DYNAMICS OF AN ELASTIC-BAND
MECHANICAL MODEL

The simplest model of an elastic band oscillating in
fundamental mode is illustrated in Fig. 2. The ends o
massless elastic band are fixed a distance 2(l 01d) apart,
where the relaxed length of the elastic band is 2l 0 and its
parameters arek,a,b @cf. Eq. ~1!#. Note that at the equilib-
rium position the elastic band is stretched a length 2d ~we
assume that the ends of the elastic band are fixed symm
cally!. To the center of the elastic band is attached a part
of massm that is free to oscillate in thex-y plane around the
origin. According to Eq.~1!, the restoring force on the par
ticle is

FIG. 2. Single-mode model for nonlinear oscillations of an el
tic band. The oscillations are assumed to be in the fundame
mode and are measured in the transversex-y plane in terms of polar
coordinates (r ,u).
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F52
2kr

l H ~ l 2 l 0!F22tanhU l 2 l 0

a UG1b~ l 2 l 0!3J , ~4!

where the position of the particle is given in terms of po
coordinates (r ,u) of thex-y plane. Expanding the right-han
side of Eq.~4! in a series~r ! l 0 , d! l 0!, we obtain

F524S kd

l 0
D r 2

2k

l 0
2 F12

d

a
23

d

l 0
G r 31OS d2

l 0
2 ,

r 3

l 0
3 D , ~5!

i.e., we can approximate the equation of motion by

r̈1v0
2r ~11aebr

2!50, ~6!

FIG. 3. Global bifurcation diagram for the variablex8, with A
528.5,d50.2, v50.86, andg in the range 0.2<g<1.

FIG. 4. Global bifurcation diagram for the variablex8, with A
527, d50.2, v51.34, andg in the range 0.2<g<1.
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FIG. 5. Phase-space portraits for the parameterd50.2,A528.5, andV50.86.~a! Symmetric orbit (g50.2), ~b! followed by symmetry
breaking (g50.6), ~c! by period doubling (g50.8), and then~d! by chaos (g50.91).
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where

v0
2[4kd/ml0 ,

aeb[@a~ l 023d!2dl0#/2dal0
2, ~7!

which corresponds to a two-dimensional conservative cu
oscillator with a single potential well@a. l 0d/( l 023d)#.
Observe that the nonlinearity parameteraeb increases with
increasing elastic-band characteristic parametera. This is the
main difference with respect to the corresponding spr
problem at the same perturbative order~cf. Refs. @9, 13#!.
Indeed, for the spring counterpart, under a similar appro
mation, one finds@13#

F'2
2k8d

l 0
r 2

k8

l 0
2 S 123

d

l 0
D r 3, ~8!

with k8 being the spring parameter~k8[2k; cf. Sec. II!.
However, in the limitd→0, both systems are described b
ic

g

i-

the same intrinsically nonlinear cubic oscillator. The resp
tive equation of motion for Eq.~8! is given by

r̈1v0
2r ~11asr

2!50, ~9!

where

as[~ l 023d!/2dl0
2. ~10!

A comparison betweenaeb @cf. Eq. ~7!# andas gives

as2aeb51/2al0 , ~11!

with aeb→as asa→`, in agreement with the discussion i
Sec. II.

In general, we will want to consider forcing and dampin
so Eq.~6! is rewritten

r̈1v0
2r ~11aebr

2!1b ṙ5P~ t !, ~12!
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FIG. 6. Power spectra corresponding to the respective cases in Fig. 5 showing the following sequence:~a! symmetric orbit~odd
subharmonics!, ~b! symmetry breaking~odd plus even subharmonics!, ~c! period doubling, and~d! chaos.
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whereP(t) is aT-periodic forcing term andb is the damping
coefficient ~which is a scalar due to the symmetry of th
system!. In order to facilitate the comparison between the
retical and~future! experimental results, Eq.~12! can be re-
written in dimensionless form. To this end, consider t
transformation

t5v0t, q5r / l 0 , ~13!

giving

q91q~11gq2!1dq85G~t/v0!, ~14!

where the prime denotes differentiation with respect tot and

g[aebl 0
2, d[b/v0 , G[P/ l 0v0

2. ~15!

For the sake of simplicity, suppose that the ends of
elastic band are fixed in such a way that the oscillation
confined to a single plane. The nonlinear equation of mot
-

e
s
n

for an elastic band vibrating primarily in its fundament
mode is a forced Duffing equation@14# of the form

x91x~11gx2!52dx81G~t/v0!, ~16!

where Eq.~16! is obtained from Eq.~14! by assuming that
the dynamics is confined to thex-z plane~see Fig. 2!. In this
paper we will take the forcing term to have the form of
harmonic modulation

G~t/v0!5A cos~Vt!, ~17!

with V[2p/Tv0 .
The simplest way to visualize the differences betwe

spring and elastic-band vibrations is to study the evolution
the attracting orbits as only the elastic-band characteri
parametera @and henceg; cf. Eqs.~7! and~15!# is varied. To
this end we will construct global bifurcation diagrams~x8 vs
g! and phase-space diagrams~x8 vs x! for planar motion
modeled by the Duffing oscillator forced only in thex direc-
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56 5325NONLINEAR AND CHAOTIC OSCILLATIONS OF AN . . .
tion by a harmonic term@Eqs. ~16! and ~17!, respectively#.
To integrate the differential equations we used a fourth-or
Runge-Kutta method with time steps in the rangeDt
50.005– 0.01. In most of the numerical simulationsd
50.2, A5$28.5,27%, V5$0.86,1.34%, and the nonlinearity
parameterg ranged from 0.2 to 1. Another way of characte
izing the phenomenon is by looking at the spectral proper
of the solutions. The numerical integration yields pseu
orbits of the system in the form of time seriesx(t),x8(t); a
standard fast Fourier transform then yields the power sp
trum S(v)5ua(v)u2. Usual averaging procedures were us
to improve its quality@15#.

In order to appreciate to some extent the global dynam
behavior of the model system~16! and~17! as the paramete
g is varied, we have determined global bifurcation diagra
corresponding to the variablex8 for two different sets of
parameters~Figs. 3 and 4!. Figure 5 shows the evolution o
the phase-space portraits for increasing nonlinearity par

FIG. 7. Bidimensional Poincare´ sections illustrating the crisis
process for the same parameters as in Fig. 3.~a! g50.91, chaotic
attractor associated with the period-doubling cascade, and~b! g
50.92, the jump in size of the chaotic attractor should be note
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FIG. 8. Bidimensional Poincare´ section simultaneously showin
the period-3 attractor~circles! for g50.81 and the chaotic attracto
for g50.82. The remaining parameters are the same as in Fig.

FIG. 9. Phase-space steady-state trajectories correspondin
the attractors in Fig. 8.~a! g50.81 and~b! g50.82.
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eterg and the remaining parameters fixed at the same va
as in Fig. 3. The associated power spectra, correspondin
the x8(t) series, are plotted in Fig. 6. For small values ofg
the orbit is symmetric@see Figs. 3 and 5~a!# with peaks cor-
responding only to odd subharmonics in the associa
power spectrum@Fig. 6~a!#. However, forg>0.3 the orbits
become spatially asymmetric@Figs. 3 and 5~b!#, which is
reflected in the visible presence of even subharmonics in
corresponding power spectrum@Fig. 6~b!#. This symmetry
breakingof the Duffing oscillator appears to be a precurs
of the period-doubling route for chaos@Figs. 3, 5~c!, and
6~c!#. This type of phenomenon was found by D’Humier
et al. @16# in a driven pendulum with increasing forcing am
plitudes@17#. For larger values ofg the system undergoes a
interior crisis in the sense of Grebogi, Ott, and Yorke@17#.
The period-doubling chaotic attractor resulting atg50.91
@Fig. 7~a!# suddenly blows up to a large chaotic attractorg
50.92@Fig. 7~b!#. As a final example, Fig. 8 shows the Poi
carésections corresponding to period-3 and chaotic attrac
for g50.81 and 0.82, respectively, the remaining parame
fixed at the same values as in Fig. 4. The associated ste
L.
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to
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state trajectories are plotted in Figs. 9~a! and 9~b!, respec-
tively.

IV. CONCLUSION

We have studied experimentally the restoring force a
ing from an elastic band, comparing it with that from a
elastic spring. It was shown that the simplest model
damped and forced oscillations of the band is capable
exhibiting several nonlinear phenomena, including crisis
well as spatial symmetry breaking as a precursor to
period-doubling route for chaos. We believe that the co
parison between theory and experiment for this model co
provide valuable information about the nonlinear dynam
of spatially extended systems. Of course, with the onse
chaotic motion it is reasonable to expect that this sin
mode will lose applicability since chaotic behavior implie
the excitation of several modes, so that the formulation o
multimode model would seem appropriate. In sum, the g
eral problem of the ‘‘excitation of multiple modes’’ by cha
otic oscillations might be fruitfully investigated by combin
ing experimental and theoretical studies of vibrating elas
bands.
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